
Griffith singularities in the random-field Ising model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys. A: Math. Gen. 27 3397

(http://iopscience.iop.org/0305-4470/27/10/015)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 21:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/10
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A Math. Gen. 27 (1994) 3397-3402. PnnIed in the UK 

Griffith singularities in the random-field king model 

Viktor Dotsenko 
Landau Institute for Theoretical Physics, Russian Academy of Sciences, Kosygina 2, Moscow 
117940. Russia 

Received 5 November 1993 

Abstract The D-dimensional ferromagnetic king model with weak Gaussian random fields is 
considered, In dimensions D < 3 due IO rare large-scale thermal excitations (large-spin clusters 
with magnetization opposite to the ferromagnetic background) in the low-temperature region 
ha << T < 1 (where ho is the characteristic value of the field) the free energy is shown to 
conrain a non-analytic wntribution of lhe form e x p ~ - ( ~ o n s I / 2 h ~ ) ( k ~ / T ) ~ ~ ~ ~ ~ ~ ] .  

There are few reliable statements for the problem of the random-field king model. 
According to simple physical arguments by Imry and Ma (1975) one would expect that 
the lower critical dimension is two. Indeed, if we try to reverse a large region of the linear 
size L there are two competing effects: the gain in energy due to the alignment with the 
random magnetic field, which scales as LDI2, and the loss of energy due to the creation of an 
interface, which scales as L@-'). At dimensions two or less the two effects are comparable 
and no spontaneous magnetization should be present. On the other hand, at dimensions 
greater than two, this effect should not destroy the long-range order and a ferromagnetic 
transition should be present. This naive (but physically correct) argument was confirmed 
by a rigorous proof by Imbrie (1984). 

On the other hand, a perturbative study of the transition shows that, as far as the leading 
infrared divergences are concerned, the strange phenomenon of a dimensional reduction is 
present, and the critical exponents of the system in dimensions D are the same as those of 
the ferromagnetic system without random fields in dimension d = D - 2 (Young 1977). 
This result would imply that the lower critical dimension is three, in contradiction with the 
rigorous results. 

Actually, the procedure of summing the leading infrared divergences could give the 
correct result only if the Hamiltonian has only one minimum in the presence of the magnetic 
field. In this case, the dimensional reduction can rigorously be shown to be exact, by using I 
supersymmetric arguments (Parisi and Sourlas 1979, Parisi 1987). 

However, as soon as the temperature is smaller than the transition temperature of 
the system without a magnetic field, there are values of the magnetic field for which 
the free energy has more than one minimum. In this situation there is no reason to 
believe that the supersymmetric approach should give the correct results, and therefore 
the dimensional reduction is not founded. This i s  not surprising, because the dimensional 
reduction completely misses the appearance of Griffith's singularities (Griffith 1969). 

Recently, it has been shown that the existence of more that one solution of the stationary 
equations in the presence of the external field is related in the replica approach to the 

030547W94/103397t06$l9.50 @ 1994 IOP Publishing Ltd 3397 



3398 V Dotsenko 

existence of new solutions of the mean-field equations in replica space which are not 
invariant under translations and rotations in replica space (translation invariance and replica 
symmetry is recovered by considering the set of all possible solutions of this kind (Parisi 
and Dotsenko 1992). 

In this paper using simple physical arguments the origin of the Griffith singularities in 
the thermodynamical functions in the low-temperature (ordered) phase in the temperature 
region hi << T << 1 for the dimensions D < 3 will be demonstrated. This non-perturbative 
contribution to the thermodynamics will be shown to come from rare, large-spin clusters 
having characteristic size - n / h o  with magnetization opposite to the ferromagnetic 
background, which are the local minima of the free energy. 

The model under consideration is defined by the Hamiltonian, 
U 

where the king spins [ui = zkl] are placed in the vertices of some D-dimensional lattice 
with the ferromagnetic interaction between the nearest neighbours, and the quenched random 
fields ( h i )  are described by the symmetric Gaussian distribution 

If the dimensions of the system are larger than two, then the ground-state spin 
configuration is ferromagnetic. The thermal excitations are the spin clusters with the 
magnetization opposite to the background. If the linear size L of such a cluster is big, 
then (in the continuous limit) the energy of this thermal excitation could be estimated as 
follows: 

(3) E ( L )  N LD-' - V ( L )  

where 

The statistical distribution of the energy function V(L) (which is the energy of the spin 
cluster of the size L in the random field h(x))  is 

(here, and in what follows, all kinds of the pre-exponential factors are omitted). For future 
calculations it will be more convenient to deal with the quenched function V(L) instead of 
h(x) .  One can easily derive an explicit expression for the distribution function P[V(L)], 
(5) (for simpliciry the parameter L is first taken to be discrete): 
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Making L continuous again, one finally gets 

1 dV(L) 
P[V(L)]-exp -- dL- - 

2:;./ LD-'(  dL 71' (7) 

Since the probability of the flips of big spin clusters is exponentially small, their 
contributions to the partition function could be assumed to be independent (it is assumed that 
such clusters are non-interacting, being very far from each other). Then, their contribution 
to the total free energy could be obtained from the statistical averaging of the Free energy 
of one isolated cluster: 

@(V(L) - LD-') . (8) 11 
Here the factor under the logarithm is the partition function obtained as a sum over all the 
sizes of the flipped cluster (the factor '1' is the contribution of the ordered state which is 
the state without the flipped cluster). 

The idea of the calculations of the above free energy is in the following. Since at 
dimensions D > 2 the energy E ( L )  = LD-' - V ( L )  is, on average, the growing function 
of L, it would be reasonable to expect that the deep local minima (if any) of this function 
are well separated and the values of the energies at these minima, on average, grow with 
the size L. For that reason, let us assume that the leading contribution in the integration 
over the sizes of the clusters in (8) comes only from one (if any) deepest local minimum 
of the function LD-' - V(L) (for a given realization of the quenched function V(L)). 

Again, in view of the fact that the energy E ( L )  = LD-' - V(L) is, on average, the 
growing function of L, the sufficient condition for existence of a minimum somewhere 
above a given size L is 

Using the above assumptions, the contribution to the free energy from the flipped clusters 
(8) could be estimated as follows: 

where S ( V )  is the probability of a given value of the energy V at a given size L, and 
P(dV(L)/dL =- ( D  - 1)LD-2) is the probability that the condition (9) is satisfied at the 
unit length at the given size L. 

According to (4): ((V*(L))) N hiLD (for large values of L). Since the distribution 
PL(V) should be expected to be Gaussian, one gets 

V2 [ 2heLD1 
PL(V)-exp -- 
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Note that the above result could also be obtained by integrating the general distribution 
function P[V(L)], equation (7). over all the 'trajectories' V(L) with the fixed value 
V(L) = V at the given length L. 

The value of the probability P(dV(L)/dL > (D - 1)LD-') could also be obtained by 
integrating P[V(L)] over all the functions V(L) conditioned by dV(L)/dL (D- 1)LD-' 
(at the given value of L ). It is clear, however, that with the exponential accuracy the result 
of such integration is defined just by the lower bound (D - l)LD-' for the derivative 
dV(L)/dL (at the given length L) in (7). Therefore, one gets 

(D - l)'LD-' 
= exp - [ 2hi 

Note the important property of the energy E ( L ) ,  which follows from (1 1)-(12): although at 
dimensions D > 2 the function E(L) grows with L, the probability to find a local minimum 
of this function at dimensions D < 3 also grows with L. It is the competition of these two 
effects which produces the non-trivial contribution to be calculated below. 

In the limit of low temperatures, p >> 1 (although still T >> hi), the contribution to the 
free energy, (10). could be divided into two separate parts: 

i m d L /  dVexp vz (D - 1 y ~ 0 - 3  I 2hiLD ut; 
AF = AF,  + AFz z -T 

v>LD-I 

The first one is the contribution from the minima which have negative energies (the 
excitations which produce the gain in energy with respect to the ordered state). Here the 
leading contribution in the integration over V comes from the limit V = LD-', and in the 
leading order one gets 

AFI - -TlmdLexp[-,, LD-2 - (D - 1)zLD-3 
2h; 

At dimensions D > 2 the leading contribution to AFI comes from L - 1 and this leads us 
back to the Imry and Ma (1975) arguments that there are no flipped big-spin clusters which 
would produce the gain in energy with respect to the ordered state. 

The second contribution in (13) comes from the local minima which have positive 
energies. These could contribute to the free energy only as thermal excitations at non-zero 
temperatures. In the limit of low temperatures (B >> 1) one could approximate 

(15) log(l+ exp{p(v - L~-'))) N exp{-p(LD-' - v)] 

where LD-' > V. Then, for AFz one gets 
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The main contribution in this integral also comes from the 'trivial' region L - 1 and 
V - p h i ,  which corresponds to the 'elementary excitations' at scales of the lattice spacing. 

However, if the temperature is not too low, p h i  << 1 and D < 3, there exists another 
non-trivial contribution which comes from the vicinity of the saddle point: 

Z D  V* = (&)La 

which is separated from the region L - 1 ,  V - phi by the big barrier. Note that the 
condition of integration in (16). V, << Lf-', according to (17) is satisfied for L, << l / p h i ,  
which is correct only if @ h i  << 1. 

For the contribution to the free energy at this saddle point one gets 

where 

The result (18) demonstrates that in addition to the usual thermal excitations in the 
vicinity of the ordered state (which could be taken into account by the traditional perturbation 
theory), due to the interaction with the random fields there exist essentially non-perturbative 
large-scale thermal excitations which produce exponentially small non-analytic contribution 
to the thermodynamics. These excitations are big-spin clusters with the magnetization 
opposite to the background which are the local energy minima. At finite temperature such 
that hi << T << 1 the characteristic size of the clusters giving the leading contribution to 
the free. energy is L. - n / h o  >> 1. 

This phenomenon, although it seems to produce a negligibly small contribution to the 
thermodynamical functions, could be extremely important for understanding the dynamical 
relaxation processes. The big clusters with reversed magnetization being the local minima 
are separated from the ground state by big energy barriers, and this could produce essential 
slowing down of the relaxation (see e.g. Nowak and Usadel 1991). In particular, the 
characteristic 'saddle-point' clusters (17), with size L,(T) - n / h O  > 1, are separated 
from the ground state by the energy barrier of the order of V, - (j3hi)-(D-Z)/Z >> 1, and 
the corresponding characteristic relaxation time at low temperatures should be expected to 
be exponentially large: 

T(T) - exp I '  >> 1 (20) 
However, to describe the time asymptotics of the relaxation processes one needs to know 
the spectrum of the relaxation times (or the energy barriers), and this would require more 
special consideration. 

Unfortunately, the results obtained in this paper cannot be duectly applied for 
dimensions D = 3, which appears to be marginal for the considered phenomena (at 
dimensions D > 3 this sort of non-perturbative effects are absent). At D = 3 none of 
those simple estimates for the energies and probabilities of the cluster excitations which 
have been used in this paper (in particular, (12)) work, and much more detailed analysis is 
required. 

On the other hand, it seems quite reasonable to expect that the results obtained are 
correct at dimensions D = 2 regardless of the fact that the long-range order is not stahle 
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there. The point is that at D = 2 the correlation length at which the long-range order is 
destroyed is exponentially large in the parameter l l h o ,  while the characteristic size of the 
spin clusters considered here is only the power of the parameter IlhO. Therefore, at the 
scales at which the Griffith singularities (18) appear, the system is still effectively ordered 
at D = 2. 
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